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Strongly anisotropic media with hyperbolic dispersion can be used for claddings of plasmonic waveguides (PWs). In
order to analyze the fundamental properties of such waveguides, we analytically study 1D waveguides arranged
from a hyperbolic metamaterial (HMM) in a HMM–Insulator–HMM (HIH) structure. We show that HMM claddings
give flexibility in designing the properties of HIH waveguides. Our comparative study on 1D PWs reveals that HIH-
type waveguides can have a higher performance than MIM or IMI waveguides. © 2014 Optical Society of America
OCIS codes: (130.3120) Integrated optics devices; (230.7370) Waveguides; (160.3918) Metamaterials; (250.5403)

Plasmonics.
http://dx.doi.org/10.1364/OL.39.004663

Plasmonic waveguides (PWs), guiding surface plasmon
polaritons (SPPs) at the nanoscale, are the basis of optical
nanocircuits. For example, the finite-length PW segments
with subwavelength apertures are used as phase-
controlling elements in metallic diffraction lenses [1–5].
Although 2D PWs have tighter confinement and are

more practical, here we limit ourselves to a theoretical
study of 1D PWs in order to present the properties of
guided SPPs more clearly. Basic 1D PWs are MIM and IMI
structures, where M and I stand for metal and insulator,
respectively.MIM and IMI PWshave complementary guid-
ing properties; i.e., theMIMdesign has better confinement
but a shorter propagation length than the IMI [6].
To enhance the functionality of standard 1D PWs, a

promising route could be the use of anisotropic materials.
Among them, strongly anisotropic materials with hyper-
bolic dispersions are of particular interest [7]. The unique
properties of hyperbolic metamaterials (HMMs) have
drawn significant attention and have been utilized for vari-
ous applications, such as subwavelength imaging [8–11],
light compression [12], and subwavelength interferences
[13]. The HMMs have already been studied as the cores
and claddings of photonic waveguides. Some of the past
studies of the photonic modes in anisotropic waveguides
include waveguides with a large mode index [14,15],
negative refractive index [16,17], and slow light [18,19].
As opposed to the previous studies, in the present work

we consider 1D PWs in which the claddings are HMMs
where translational symmetries are broken [20,21]. Our
guideline would help to choose the best PWs in terms
of functionality. We analytically study fundamental guid-
ing properties of HIH PWs using realistic materials and
compare HIH PWs against MIM and IMI PWs. Our analysis
aims at a basic understanding of HIH PWs and could
be extended to designing 2D PWs cladded by HMMs.
Metal–dielectric lamellar structures are the simplest

HMMs [22], where the effective permittivities of per-

pendicular (ε⊥) and parallel components (ε‖) can be es-
timated through the effective media theory (EMT),
ε−1⊥ � �1 − r�ε−1d � rε−1m , ε‖ � rεm � �1 − r�εd, where εm
and εd are the permittivities of the metal and the dielec-
tric, respectively, and r is the ratio of the metal layer
thickness to the period of the lamellar HMM. All the cal-
culations shown in the Letter are done by taking the ef-
fective permittivities of the lamellar structures. However,
we note that the differences between the exact solutions
are negligible within the conditions analyzed in this
Letter (results not presented).

To begin, we derive a dispersion equation (DE) of 1D
PWs that have different uniaxial anisotropy for the top
cladding, the core, and the bottom cladding. The deriva-
tion and the final DE are shown in Appendix A. The DE
becomes simpler if both claddings are identical. The DEs
for plasmonic guided modes can be easily modified for
photonic guided modes (see Appendix A).

Here, we analytically calculate the properties of HIH
PWs having isotropic dielectric cores [ε̄ � diag�εc; εc; εc�]
using the DE. When constructing HIH PWs, the optical
axes of HMMs are always perpendicular to the propaga-
tion direction, so that the parallel component (ε‖) is neg-
ative. This condition ensures plasmonic propagation.
Note that further on, we consider only long-range propa-
gatingmodes defined by Eq. (A9), aswe are not interested
in short-range modes given by Eq. (A10).

To construct lamellar HMMs, we take gold (εm � εAu)
[23] and silica (εd � 2.25) for the metal and dielectric, re-
spectively, and consider different metal ratios (r � 0.2,
0.5, 0.8, and 1). As shown in Fig. 1, the effective permit-
tivities provide a hyperbolic regime for all r (except for
r � 1, when the cladding consists only of gold and the
waveguide becomes equivalent to an MIM PW).

Using the HMMs with the permittivities plotted in
Fig. 1, we then plot the guiding properties of the HMM
PWs in Fig. 2: magnetic field amplitude, mode index
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neff � Re�kx��k0�−1, propagation length, L � Im�2kx�−1,
and penetration depth on the one side of the cladding
δ � Im�2ky�−1. The permittivity of the core (εc) and the
core thickness (2d) are fixed to unity and 50 nm, respec-
tively. The magnetic field plot shows plasmonic pro-
pagations, which are similar to MIM PWs. The effective
indices are around 1.45 and depend slightly on the
changes in r. In the near-IR region, the propagation
lengths and the penetration depths are around 8 μm and
20–50 nm, respectively, except r � 0.2. At r � 0.2, the
propagation lengths and the penetration depths are
around 10 μm and 100 nm, respectively.
Next, we plot the core-thickness dependences of four

different PWs—MIM, IMI, and two different HIH PWs—in
Fig. 3. It is well known that propagation length becomes
shorter as the core thickness becomes smaller for MIM
PWs, while IMI PWs have the opposite dependence [see
Figs. 3(a) and 3(b)]. We need to pay attention to the HIH
PWs in Figs. 3(c) and 3(d): while the HIH PWs at
εm � εAu, εd � 2.25, εc � 1, and r � 0.5 maintain an
MIM property, the HIH PWs at εm � εAu, εd � 2.25, εc �
1.88 (permittivity of MgF2), and r � 0.2 have a property
of IMI PWs.
After studying the properties of HIH PWs, we then

compare their characteristics with two other standard
PW layouts: MIM and IMI. For this purpose, we introduce

a figure of merit (FoM) proposed by Berini [24]:
FoM � L∕D, where D � 2�δ� d� is the mode size, with
δ and d representing the penetration depth and one half
of the core thickness, respectively, and L is the propaga-
tion length. In general, it is desirable for a waveguide to
have a longer propagation length and a smaller penetra-
tion depth, which results in a large FoM. The definition of
FoM includes the core thickness in order to compare
waveguides having different core thicknesses; however,
the inclusion of core thickness does not change the
trends presented below.

In Fig. 4, we plot the FoMs of the HIH PWs in addition to
those of the MIM as well as the IMI PWs. The core thick-
nesses are fixed at 50 nm.TheHMMswhich areused as the
claddings of HIH PWs are identical to those plotted in
Fig. 1. For the particular case considered in Fig. 4(b),
the HIH PWs at r � 0.2 have a higher FoM than the
MIMand IMI PWs above 1450 nm. The results indicate that
making the correct choices of geometry and materials,
HIH PWs can be designed to outperform MIM and
IMI PWs.

The conclusion about the FoM changes with any of the
following parameters: wavelength, permittivity of the con-
stituent materials, metal ratio, and thickness of the core.

Fig. 1. Effective anisotropic permittivities of the lamellar
structures for r � 0.2, 0.5, 0.8, and 1. The solid lines and
dashed lines represent perpendicular and parallel components,
respectively.
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Fig. 2. (a) Schematic of a symmetric HIH PW. Magnetic
field amplitudes along the y axis at 1550 nm are superimposed.
(b) Effective index, (c) propagation length, and (d) penetration
depth of the HIH PWs at r � 0.2, 0.5, 0.8, and 1.
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Fig. 3. Propagation length of (a) MIM, (b) IMI, and (c), (d) HIH
PWs for three different core thicknesses (20, 50, and 100 nm).
For HIH PWs, (c) εm � εAu, εd � 2.25, εs � 1, and r � 0.5; and
(d) εm � εAu, εd � 2.25, εc � 1.88, and r � 0.2.
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Fig. 4. FoMs of HIH PWs for various r (r � 0.2, 0.5, and 1) in
comparison to the FoM of the IMI PWs. The HIH PW at r � 1 is
equivalent to the MIM PW. For all cases, the core thickness is
50 nm. (a) The permittivity of the core in the HIH PWs and of the
host in the IMI PW is equal to 1. (b) The permittivity of the core
the HIH PWs and of the host in the IMI PW is 2.25.
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To analyze the structure here, we decided to limit our
study by the case of telecom wavelength 1.55 μm and
two materials, i.e., gold and silica. Thus, we varied r
and d and plotted propagation length and effective mode
size for the different structures as shown in Fig. 5. The
vertical dotted lines show the mode sizes which approx-
imately correspond to the size of a conventional photonic
waveguide, so this region is of particular interest. Thus,
for a low filling ratio r < 0.3, HIH PWs can have properties
which are not achievablewithMIMor IMI PWs. In particu-
lar, HIHwaveguides can have a higher propagation length
(>650 μm) while maintaining a smaller mode size
(<2 μm).
To summarize, we study the guiding properties of 1D

PWs, where the isotropic dielectric cores are cladded by
HMMs.WorkingwithHMMs enables us to tune the proper-
ties of PWs with existing materials. With a proper choice
of geometry and materials, HIH PWs can have a higher
performance than MIM and IMI PWs. Our current study
on 1D HIH PWs could be extended to 2D HIH PWs.
In practice, a critical issue for PWs is that actual metals

have losses, which substantially shorten the propagation
lengths. We note that using HMMs could abate the effect
of losses. Moreover, passive dielectric layers of HMMs
could be replacedwith activematerials such as dye-doped
polymers [25–28], hence compensating for the propaga-
tion losses, and they can be applied for interconnects
in on-chip devices. Further analysis will be presented
elsewhere.

Appendix A

A schematic drawing of a 1D anisotropic waveguide is
shown in Fig. 6. The waveguide is made of three different
anisotropic layers: an upper cladding (A1), a core (A2),
and a lower cladding (A3). The thickness of the core is 2d.
Both claddings are semi-infinite in the y direction; the
range y ∈ �−∞;−d� defines the lower layer, while y ∈

�d;∞� defines the upper layer. The dielectric constants
of the anisotropic materials are given as εxi, εyi, and
εzi, where i represents the layer number, i � f1; 2; 3g.
The anisotropy axes are aligned with the propagation di-
rection and with a unit normal vector to the interface, so
that ε̄i � diag�εxi; εyi; εzi�. The purpose of this study is to
derive the DEs for 1D waveguides made of anisotropic
materials.

To study plasmonic modes propagating along the x
axis, we start from Maxwell’s equations, where the time-
dependence factor exp�−iωt� is omitted for simplicity.
The charge density inside the structure equals zero, so
that ∇ · D � ∇ · B � 0. The other two equations are the
following:

∇ × E � −μ0∂t�μH�; (A1)

∇ ×H � ε0∂t�εE�; (A2)

where μ � 1 and ε � diag�εx; εy; εz�. From Eqs. (A1) and
(A2), we can write the wave equation (k0 � ω∕c)

x̂ × ∇�ε−1x x̂ · ∇ ×H� � ŷ × ∇�ε−1y ŷ · ∇ ×H�
� ẑ × ∇�ε−1z ẑ · ∇ ×H� � k20H � 0: (A3)

For TM polarization, we take H � ẑh, ε0E � d � x̂dx�
ŷdy; here dy � −iω−1ε−1y h�x� and

dx � iω−1ε−1x h�y�: (A4)

Then, employing the normalized coordinates (k0x → x,
k0y → y, k0z → z, and k0d → d), we arrive at the scalar
wave equation:

h�x;x� � εy�ε−1x h�y���y� � εyh � 0; (A5)

where f �q� � ∂f∕∂q.
After using γi � ε−1xi gi � �ε−1yi ε−1xi k2x − ε−1xi �1∕2, we have

e2γ2εx2d�γ1 � γ2��γ2 � γ3� − e−2γ2εx2d�γ1 − γ2��γ2 − γ3� � 0;

(A6)

or in another form, the above reads as

tanh�2εx2γ2d� � −γ2
γ1 � γ3
γ22 � γ1γ3

: (A7)

This equation can be simplified when the upper cladding
A1 and the lower cladding A3 are made of the same aniso-
tropic material (γ1 � γ3):

tanh�2εx2γ2d� � −

2
γ2∕γ1 � γ1∕γ2

: (A8)

From trigonometric identities, we obtain

tanh�γ2εx2d� � −γ1∕γ2 (A9)
or

tanh�γ2εx2d� � −γ2∕γ1: (A10)

When a symmetric 1D waveguide is made of isotropic
materials, Eqs. (A9) and (A10) degenerate into
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Fig. 5. Characteristics of the HIH PWs and their comparison
with MIM and IMI PW layouts at the wavelength of 1.55 μm.

Fig. 6. Schematic drawing of an anisotropic waveguide.
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tanh�g2d� � −g1ε2�g2ε1�−1; (A11)

tanh�g2d� � −g2ε1�g1ε2�−1; (A12)

where ε1 and ε2 denote the dielectric function of the clad-
ding and the core, respectively. Equations (A11) and
(A12) match known results; see, for example, [29].
For TE polarization, there is no solution for plasmonic

modes as long as all the materials are nonmagnetic,
which is the case for natural materials in optical range.
Equations (A11) and (A12) can be easily modified for

photonicmodes. For TM polarization, g2 in Eqs. (A11) and
(A12) should be replaced with ig2 and ig1, respectively,
for waves guided in the dielectric core, in contrast to
the case of plasmonic modes (SPPs) guided along the
core-cladding interfaces. Using the relation i tanh ix �
− tan x, we arrive at the following DEs, defining the
TM-polarized photonic modes:

tan�g2d� � −g2εx1�g1εx2�−1; (A13)

tan�g2d� � g1εx2�g2εx1�−1; (A14)

where g2 � �εx2 − εx2�εy2�−1k2x�1∕2.
For TE polarization, we take advantage of the duality

relations between electric and magnetic parameters. The
dielectric constants in Eqs. (A13) and (A14) (εx1, εy1, εx2,
and εy2) are replaced by their counterparts, μx1, μy1, μx2,
and μy2, which are all equal to 1 in optical range. Hence,
the DEs for the TE-polarized photonic modes are

tan�k2d� � −k2∕k1; (A15)

tan�k2d� � k1∕k2; (A16)

where k2 � �εx2 − k2x�1∕2.
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